Transesterification Synthesis of Chloramphenicol Esters with the Lipase from Bacillus amyloliquefaciens.
نویسندگان
چکیده
This work presents a synthetic route to produce chloramphenicol esters by taking advantage the high enantio- and regio-selectivity of lipases. A series of chloramphenicol esters were synthesized using chloramphenicol, acyl donors of different carbon chain length and lipase LipBA (lipase cloned from Bacillus amyloliquefaciens). Among acyl donors with different carbon chain lengths, vinyl propionate was found to be the best. The influences of different organic solvents, reaction temperature, reaction time, enzyme loading and water content on the synthesis of the chloramphenicol esters were studied. The synthesis of chloramphenicol propionate (0.25 M) with 4.0 g L-1 of LipBA loading gave a conversion of ~98% and a purity of ~99% within 8 h at 50 °C in 1,4-dioxane as solvent. The optimum mole ratio of vinyl propionate to chloramphenicol was increased to 5:1. This is the first report of B. amyloliquefaciens lipase being used in chloramphenicol ester synthesis and a detailed study of the synthesis of chloramphenicol propionate using this reaction. The high enzyme activity and selectivity make lipase LipBA an attractive catalyst for green chemical synthesis of molecules with complex structures.
منابع مشابه
Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis
Background: Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective: The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorpti...
متن کاملSynthesis of ethyl acetate employing celite-immobilized lipase of Bacillus cereus MTCC 8372.
A wide range of fatty acid esters can be synthesized by esterification and transesterification reactions catalyzed by lipases in non-aqueous systems. In the present study, immobilization of a purified alkaline extra-cellular lipase of Bacillus cereus MTCC 8372 by adsorption on diatomaceous earth (celite) for synthesis of ethyl acetate via transesterification route was investigated. B. cereus li...
متن کاملGene cloning, expression, and characterization of the Bacillus amyloliquefaciens PS35 lipase
Lipases are enzymes of immense industrial relevance, and, therefore, are being intensely investigated. In an attempt to characterize lipases at molecular level from novel sources, a lipase gene from Bacillus amyloliquefaciens PS35 was cloned, heterologously expressed in Escherichia coli DH5α cells and sequenced. It showed up to 98% homology with other lipase sequences in the NCBI database. The ...
متن کاملLipase Immobilized into Novel GPTMS: TMOS Derived Sol-Gels and Its Application for Biodiesel Production from Waste Oil
In this essay, lipase from Burkholderia cepacia was immobilized into 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS) derived sol-gels. GPTMS:TMOS molar ratio of 1:3 was found to yield the best result. The morphological characteristics were investigated based on SEM and BET analysis. Sample mean pore diameter was 39.1 nm, it had a specific surface area of 60 m2/g prior to...
متن کاملEnzymatic synthesis of short chain citronellyl esters by a new lipase from Rhizopus sp
Short chain citronellyl esters were synthesized by a new microbial lipase from Rhizopus sp strain isolated and lipase produced at UNICAMP, Brazil. Direct esterification and transesterification reactions have been performed to produce citronellyl acetate and butyrate in a free-solvent system and with n-hexane in reaction medium. Reaction mixture for direct esterification and transesterification ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 9 شماره
صفحات -
تاریخ انتشار 2017